jueves, 10 de noviembre de 2016

Caracteristicas y ejemplos de fuerzas intermoleculares

Las fuerzas intermoleculares se definen como el conjunto de fuerzas atractivas y repulsivas que se producen entre las moléculas como consecuencia de la presencia o ausencia de electrones.
Cuando dos o más átomos se unen mediante un enlace químico forman una molécula, los electrones que conforman la nueva molécula recorren y se concentran en la zona del átomo con mayor electronegatividad, definimos la electronegatividad como la propiedad que tienen los átomos en atraer electrones. La concentración de electrones en una zona específica de la molécula crea una carga negativa, mientras que la ausencia de los electrones crea una carga positiva.
Denominamos dipolos a las moléculas que disponen de zonas cargadas negativamente y positivamente debido a la electronegatividad y concentración de los electrones en las moléculas.
Podemos asimilar el funcionamiento de un dipolo a un imán con su polo positivo y su polo negativo, de tal forma que si acercamos otro imán el polo positivo atraerá al polo negativo y viceversa, dando como resultado una unión.
fuerzas intermoleculares
Las fuerzas intermoleculares que actúan entre las moléculas se clasifican en :
  • Dipolos permanentes
  • Dipolos inducidos
  • Dipolos dispersos.
  • Puentes de hidrógeno
Dentro de los 4 grupos descritos anteriormente, las fuerzas más relevantes son las 3 primeras también conocidas como fuerzas de Van der Waals.
Dipolos permanentes
Este tipo de unión se produce cuando ambas moléculas disponen de cargas positivas y negativas, es decir son moléculas polares o que tienen polaridad, atrayéndose electrostaticamente y formando la unión.
Dipolos inducidos
Este tipo de unión se produce cuando una molécula no polar redistribuye la concentración de los electrones (tiene la posibilidad de polarizarse) al acercarse una molécula polar, de tal forma que se crea una unión entre ambas moléculas.
En este caso la molécula polar induce la creación de la molécula apolar en una molécula polar.

caracteristicas y ejemplos del enlace metalico

Principales propiedades de los compuestos metálicos:


  • Buenos conductores de calor y electricidad
  • La mayoría se presenta en estado sólido
  • La mayoría posee puntos de fusión y ebullición elevados
  • Son maleables o dúctiles
  • Poseen brillo característico

Un ejemplo de compuesto metálico, puede ser el oro, que es un metal noble, muy valorizado en el mercado. El es generalmente comercializado en la forma de mezcla con otros compuestos, mezcla que, en los metales tiene el nombre de aleación.

Resultado de imagen para enlaces metalicos

caracteristicas y ejemplos de enlaces covalentes

En el enlace covalente dos electrones comparten electrones para lograr completar su nivel de energía más externo.
La diferencia que hay entre electronegatividades entre los átomos que forman el enlace, es menor a 1.7. A diferencia de lo que sucede en el enlace iónico, en el que se transfieren electrones, en este tipo de enlace, se comparten.
Al compartir uno o más electrones, logran un nuevo orbital llamado orbital, al completar la cantidad de electrones, se logra la cantidad requerida y así volverse estable.
Al compartir un solo electrón, logramos hacer un enlace covalente simple, así mismo al compartir 4 electrones, en 2 partes, completamos un enlace covalente doble, y el enlace covalente triple lo logramos cuando compartimos 6 electrones en 3 pares

Características de moléculas con enlaces covalentes.
•Bajas temperaturas de fusión y ebullición.
•En condiciones normales (25°), estas pueden ser sólidas, líquidas o gaseosas.
•Son blandos en estado sólido.
•Son aislantes de corriente eléctrica y calor.
•Son solubles en agua.

Resultado de imagen para enlaces covalentes

caracteristicas y ejmplos de los enlaces ionicos

Algunas características de este tipo de enlace son:
  • Sus enlaces son muy fuertes (depende fuertemente de la naturaleza de los iones).
  • Son sólidos a temperatura ambiente y poseen una estructura cristalina en el sistema cúbico. (Hay compuestos iónicos que son líquidos a temperatura ambiente denominados "líquidos iónicos" o "Sales Derretidas", con un campo de aplicación gigantesco.)
  • Altos puntos de fusión (entre 300  °C y 1000 °C) y ebullición (Si el enlace tiene un carácter covalente alto, puede ser que estos valores disminuyan abruptamente)
  • Son enlaces resultantes de la interacción entre los metales de los grupos I y II y los no metales de los grupos VI y VII.
  • Son solubles en agua y otras disoluciones acuosas debido al dipolo eléctrico que presentan las moléculas de agua; capaces de solvatar a los iones, compensando así la energía de red cristalina. (No todos los compuestos iónicos se pueden solubilizar fácilmente con agua, ya sea por la poca energía de solvatación de los iones o por el carácter covalente del compuesto iónico):
  • Una vez en disolución acuosa son excelentes conductores de electricidad, ya que entonces los iones quedan libres. (Hay una gran variedad de compuestos iónicos que son poco o muy poco solubles en disolución acuosa, también debido al carácter covalente del compuesto y que no permite que el agua separe fácilmente la red cristalina, resultando así en una muy pobre conductividad en disolución)
  • En estado sólido no conducen la electricidad, ya que los iones ocupan posiciones muy fijas en la red. Si utilizamos un bloque de sal como parte de un circuito en lugar del cable, el circuito no funcionará. Así tampoco funcionará una bombilla si utilizamos como parte de un circuito un cubo de agua, pero si disolvemos sal en abundancia en dicho cubo, la bombilla del circuito se encenderá. Esto se debe a que los iones disueltos de la sal son capaces de acudir al polo opuesto (a su signo) de la pila del circuito y, por ello, este funciona.8  

Resultado de imagen para enlaces ionicos

clasificacion de los elementos

Grupos
A las columnas verticales de la tabla periódica se las conoce como grupos o familias. Hay 18 grupos en la tabla periódica estándar. En virtud de un convenio internacional de denominación, los grupos están numerados de 1 a 18 desde la columna más a la izquierda —los metales alcalinos— hasta la columna más a la derecha —los gases nobles—.53 Anteriormente se utilizaban números romanos según la última cifra del convenio de denominación de hoy en día —por ejemplo, los elementos del grupo 4 estaban en el IVB y los del grupo 14 en el IVA—. En estados unidos, los números romanos fueron seguidos por una letra «A» si el grupo estaba en el bloque s o p, o una «B» si pertenecía al d. En Europa, se utilizaban letras en forma similar, excepto que «A» se usaba si era un grupo precedente al 10, y «B» para el 10 o posteriores. Además, solía tratarse a los grupos 8, 9 y 10 como un único grupo triple, conocido colectivamente en ambas notaciones como grupo VIII. En 1988 se puso en uso el nuevo sistema de nomenclatura de IUPAC se pone en uso, y se desecharon los nombres de grupo previos.54
Algunos de estos grupos tienen nombres triviales —no sistemáticos—, como se ve en la tabla de abajo, aunque no siempre se utilizan. Los grupos del 3 al 10 no tienen nombres comunes y se denominan simplemente mediante sus números de grupo o por el nombre de su primer miembro —por ejemplo, «el grupo de escandio» para el 3—, ya que presentan un menor número de similitudes y/o tendencias verticales.53
·         Grupo 1 (I A): metales alcalinos
·         Grupo 2 (II A): metales alcalinotérreos
·         Grupo 3 (III B): familia del Escandio (tierras raras y actinidos)
·         Grupo 4 (IV B): familia del Titanio
·         Grupo 5 (V B): familia del Vanadio
·         Grupo 6 (VI B): familia del Cromo
·         Grupo 7 (VII B): familia del Manganeso
·         Grupo 8 (VIII B): familia del Hierro
·         Grupo 9 (VIII B): familia del Cobalto
·         Grupo 10 (VIII B): familia del Níquel
·         Grupo 11 (I B): familia del Cobre
·         Grupo 12 (II B): familia del Zinc
·         Grupo 13 (III A): térreos
·         Grupo 14 (IV A): carbonoideos
·         Grupo 15 (V A): nitrogenoideos
·         Grupo 16 (VI A): calcógenos o anfígenos
·         Grupo 17 (VII A): halógenos
·         Grupo 18 (VIII A): gases nobles
La explicación moderna del ordenamiento en la tabla periódica es que los elementos de un grupo poseen configuraciones electrónicas similares y la misma valencia, entendida como el número de electrones en la última capa. Dado que las propiedades químicas dependen profundamente de las interacciones de los electrones que están ubicados en los niveles más externos, los elementos de un mismo grupo tienen propiedades químicas similares y muestran una tendencia clara en sus propiedades al aumentar el número atómico.55
Por ejemplo, los elementos en el grupo 1 tienen una configuración electrónica ns1 y una valencia de 1 —un electrón externo— y todos tienden a perder ese electrón al enlazarse como iones positivos de +1. Los elementos en el último grupo de la derecha son los gases nobles, los cuales tienen lleno su último nivel de energía —regla del octeto— y, por ello, son excepcionalmente no reactivos y son también llamados «gases inertes».
Los elementos de un mismo grupo tienden a mostrar patrones en el radio atómicoenergía de ionización y electronegatividad. De arriba a abajo en un grupo, aumentan los radios atómicos de los elementos. Puesto que hay niveles de energía más llenos, los electrones de valencia se encuentran más alejados del núcleo. Desde la parte superior, cada elemento sucesivo tiene una energía de ionización más baja, ya que es más fácil quitar un electrón en los átomos que están menos fuertemente unidos. Del mismo modo, un grupo tiene una disminución de electronegatividad desde la parte superior a la inferior debido a una distancia cada vez mayor entre los electrones de valencia y el núcleo.56
Hay excepciones a estas tendencias, como por ejemplo lo que ocurre en el grupo 11, donde la electronegatividad aumenta más abajo en el grupo.57 Además, en algunas partes de la tabla periódica como los bloques d y f, las similitudes horizontales pueden ser tan o más pronunciadas que las verticales.58 59 60
Períodos
Las filas horizontales de la tabla periódica son llamadas períodos.61 El número de niveles energéticos de un átomo determina el periodo al que pertenece. Cada nivel está dividido en distintos subniveles, que conforme aumenta su número atómico se van llenando en este orden:
1s
2s
2p
3s
3p
4s
3d
4p
5s
4d
5p
6s
4f
5d
6p
7s
5f
6d
7p
Siguiendo esa norma, cada elemento se coloca según su configuración electrónica y da forma a la tabla periódica.
Los elementos en el mismo período muestran tendencias similares en radio atómicoenergía de ionizaciónafinidad electrónica y electronegatividad. En un período el radio atómico normalmente decrece si nos desplazamos hacia la derecha debido a que cada elemento sucesivo añadió protones y electrones, lo que provoca que este último sea arrastrado más cerca del núcleo.62 Esta disminución del radio atómico también causa que la energía de ionización y la electronegatividad aumenten de izquierda a derecha en un período, debido a la atracción que ejerce el núcleo sobre los electrones.56 La afinidad electrónica también muestra una leve tendencia a lo largo de un período. Los metales —a la izquierda— generalmente tienen una afinidad menor que los no metales —a la derecha del período—, excepto para los gases nobles.63
La tabla periódica consta de 7 períodos:
·         Período 1
·         Período 2
·         Período 3
·         Período 4
·         Período 5
·         Período 6
·         Período 7




 Bloques

La tabla periódica se puede también dividir en bloques de acuerdo a la secuencia en la que se llenan las capas de electrones de los elementos. Cada bloque se denomina según el orbital en el que el en teoría reside el último electrón: spd y f.64 n. 4 El bloque s comprende los dos primeros grupos (metales alcalinos y alcalinotérreos), así como el hidrógeno y el helio. El bloque p comprende los últimos seis grupos —que son grupos del 13 al 18 en la IUPAC (3A a 8A en América)— y contiene, entre otros elementos, todos los metaloides. El bloque d comprende los grupos 3 a 12 —o 3B a 2B en la numeración americana de grupo— y contiene todos los metales de transición. El bloque f, a menudo colocado por debajo del resto de la tabla periódica, no tiene números de grupo y se compone de lantánidos y actínidos.65 Podría haber más elementos que llenarían otros orbitales, pero no se han sintetizado o descubierto; en este caso se continúa con el orden alfabético para nombrarlos. Así surge el bloque g, que es un bloque hipotético.
Metales, metaloides y no metales[editar]
De acuerdo con las propiedades físicas y químicas que comparten, los elementos se pueden clasificar en tres grandes categorías: metales, metaloides y no metales. Los metales son sólidos generalmente brillantes, altamente conductores que forman aleaciones de unos con otros y compuestos iónicos similares a sales con compuestos no metálicos —siempre que no sean los gases nobles—. La mayoría de los no metales son gases incoloros o de colores; pueden formar enlaces covalentes con otros elementos no metálicos. Entre metales y no metales están los metaloides, que tienen propiedades intermedias o mixtas.66
Metales y no metales pueden clasificarse en subcategorías que muestran una gradación desde lo metálico a las propiedades no metálicas, de izquierda a derecha, en las filas: metales alcalinos —altamente reactivos—, metales alcalinotérreos —menos reactivos—, lantánidos y actínidosmetales de transición y metales post-transición. Los no metales se subdividen simplemente en no metales poliatómicos —que, por estar más cercanos a los metaloides, muestran cierto carácter metálico incipiente—, no metales diatómicos —que son esencialmente no metálicos— y los gases nobles, que son monoatómicos no metálicos y casi completamente inertes. Ocasionalmente también se señalan subgrupos dentro de los metales de transición, tales como metales refractarios y metales nobles.67 and occasionally denoted.68

La colocación de los elementos en categorías y subcategorías en función de las propiedades compartidas es imperfecta. Hay un espectro de propiedades dentro de cada categoría y no es difícil encontrar coincidencias en los límites, como es el caso con la mayoría de los sistemas de clasificación.69 El berilio, por ejemplo, se clasifica como un metal alcalinotérreo, aunque su composición química anfótera y su tendencia a formar compuestos covalentes son dos atributos de un metal de transición químicamente débil o posterior. El radón se clasifica como un no metal y un gas noble aunque tiene algunas características químicas catiónicas más características de un metal. También es posible clasificar con base en la división de los elementos en categorías de sucesos, mineralógicos o estructuras cristalinas. La categorización de los elementos de esta forma se remonta a por lo menos 1869, cuando Hinrichs escribió que se pueden extraer líneas sencillas de límites para mostrar los elementos que tienen propiedades similares, tales como metales y no metales, o los elementos gaseosos.